N ov 2 00 8 AREA DEPENDENCE IN GAUGED GROMOV - WITTEN THEORY

نویسنده

  • CHRIS WOODWARD
چکیده

We study the variation of the moduli space of symplectic vortices on a fixed holomorphic curve with respect to the area form. For compact, convex varieties we define gauged Gromov-Witten invariants and prove a wall-crossing formula for them. As an application, we prove a vortex version of the abelianization (or quantum Martin) conjecture of Bertram, Ciocan-Fontanine, and Kim [4], which relates Gromov-Witten invariants of geometric invariant theory quotients by a group and its maximal torus, for vortices on non-trivial bundles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J ul 2 00 9 AREA DEPENDENCE IN GAUGED GROMOV - WITTEN THEORY

We prove a wall-crossing formula for the variation of gauged GromovWitten invariants of a smooth projective G-variety (with fixed domain curve) with respect to the natural stability condition defined by the area of the curve. As an application, we prove a gauged version of the abelianization (or quantum Martin) conjecture of Bertram, Ciocan-Fontanine, and Kim [8], which relates GromovWitten inv...

متن کامل

N ov 2 00 4 The local Gromov - Witten theory of curves

We study the equivariant Gromov-Witten theory of a rank 2 vector bundle N over a nonsingular curve X of genus g: (i) We define a TQFT using the Gromov-Witten partition functions. The full theory is determined in the TQFT formalism from a few exact calculations. We use a reconstruction result proven jointly with C. Faber and A. Okounkov in the appendix. X and N is equipped with the anti-diagonal...

متن کامل

Gauged Gromov-witten Theory for Small Spheres

We prove that any sequence of genus zero symplectic vortices with vanishing area has a subsequence that converges to a holomorphic map with zero average moment map. Conversely, any such map is the limit of such a sequence. We use these results to equate the gauged Gromov-Witten invariants for sufficiently small area with the invariant part of equivariant Gromov-Witten invariants, for convex tar...

متن کامل

N ov 2 00 8 Homological Stability Among Moduli Spaces of Holomorphic Curves in C P

The primary goal of this paper is to find a homotopy theoretic approximation to Mg(CP ), the moduli space of degree d holomorphic maps of genus g Riemann surfaces into CP. There is a similar treatment of a partial compactification of Mg(CP ) of irreducible stable maps in the sense of Gromov-Witten theory. The arguments follow those from a paper of G. Segal ([Seg79]) on the topology of the space...

متن کامل

Area Dependence in Gauged Gromov-witten Theory

We study the variation of the moduli space of symplectic vortices on a fixed holomorphic curve with respect to the area form. For compact, convex varieties we define symplectic vortex invariants and prove a wall-crossing formula for them. As an application, we prove a vortex version of the abelianization conjecture of Bertram, Ciocan-Fontanine, and Kim [4], which related GromovWitten invariants...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009